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ABSTRACT 

In wafer fabrication, data is collected and analyzed to 

prevent process deviations that could affect product quality and 

wafer yield. However, the high-dimensional, sparse, and 

imbalanced nature of the data poses significant challenges to 

yield and quality root cause analysis. Deep Topological Data 

Analysis (DTDA) is an unsupervised machine learning method 

that clusters and models the data in the form of geometric objects 

such as graphs and their higher-dimensional versions. This 

method reduces the multidimensional dataset to two-dimensional 

networks or graphs, where each node represents a cluster of 

samples with similar characteristics, and an edge represents the 

presence of overlapping characteristics between the connecting 

nodes. DTDA provides insights into the necessary data elements 

required to conduct accurate analysis and helps engineers 

identify the features contributing to yield and quality issues, 

enabling corrective actions. Moreover, the approach prevents the 

waste of engineering resources and mitigates the impact on final 

manufacturing cost. 

Keywords: topological data analysis, feature selection, high 

dimensional, wafer manufacturing, big data, yield and quality 

improvements 

 

1. INTRODUCTION 

 A vast amount of data is collected in wafer fabrication and 

routinely analyzed to ensure that there are no process deviations 

that may result in loss of product quality and wafer yield. 

Characterizing and determining the factors which cause these 

deviations is crucial to drive corrective actions and improve 

production cost.  

 Big Data shifted how we collect, store, and analyze data and 

enables engineers to link an infinite number of features to a 

single wafer/die. With the number of wafer process steps above 

a thousand, engineers can link tens of thousands of features 

together to describe a wafer/die, and it is not even close to what 

maximally possible. A dataset that has more features (columns) 

than data points (rows) is often referred in the literature as high 

dimensional data. This high dimensionality is more critical at the 

new product introduction (NPI) phase where we have limited 

number of wafers as data points and among those wafers even 

lower number of wafers with quality or yield loss issues. The low 

number of data samples with less than 5% of positive labels adds 

significant complexity to the analytics and described as highly 

imbalanced. Due to the high variations of wafer workflows, 

especially in NPI phase, we also have features that are not 

present for a handful of wafers increasing the sparsity of the 

analyzed data. 

  To describe yield and quality root cause analysis in term of 

data analytics, we can state that the challenge is to find a set of 

features in a highly dimensional, imbalanced, and sparse dataset 

that provide statistical confidence in predicting positive labels. 

Any one of these properties provide a unique challenge for data 

scientist, but the combination of the three is why quality and 

yield analytics is so extremely difficult to approach by 

established AI/ML approaches. The conventional methods used 

for dimensionality reduction, feature selection, and visualizing 

such high dimensional dataset include principal component 
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analysis (PCA), partial least squares (PLS), Uniform Manifold 

Approximation and Projection (UMAP), and t-distributed 

stochastic neighbor embedding (t-SNE). However, these 

methods are known to be sensitive to noise and outliers, are 

linear, require specific probability distributions and perform 

poorly with sparse and imbalanced data. Another requirement for 

these types of analytics is that engineers are not only interested 

in the features that can predict a certain type of failures, but they 

must understand why, so they can execute corrective actions. 

Explainable AI/ML (XAI) is a new field in data science with 

several on-going research studies and of high importance in 

making industrial AI/ML applications successful.  

 In this paper, we propose a novel approach to yield and 

quality improvements utilizing topological data analysis. 

Topological data analysis (TDA) is an unsupervised machine 

learning approach which aims to determine the unknown 

topology of the high-dimensional manifold where the data 

resides to extract the hidden patterns [1] [2]. TDA defines the 

relationship between shapes through abstract topological shapes 

instead of traditional geometric meanings. TDA when combined 

with deep generative models results in a unique XAI technique 

referred as Deep Topological Data Analysis (DTDA) that 

identifies hidden structures within dataset, clusters them 

according to the patterns found, explains which features of the 

data contributed to the formation of these clusters and how these 

features are correlated [3].  DTDA uses the Vietoris-Rips 

algorithm [4] to construct nearby data points to build topological 

structures, and nested complexes are used to identify persistent 

elements of the data structure using Morse theory [5]. Finally, 

the manifolds of original dimensions are simplified and 

visualized [6].  

 

 Our main objective is to demonstrate the effectiveness of the 

DTDA approach in improving yield and quality in 

manufacturing processes while providing a clear and 

interpretable explanation of the decision-making process. The 

remainder of the paper is organized as follows. In Materials and 

Methods section, we introduce the proposed methodology, 

including the dataset used, pre-processing steps, machine 

learning method used, and the explainability measures 

employed. In the Results and Discussion section, we present the 

findings from the use cases investigated and discuss the 

performance of the chosen method in terms of yield and quality 

improvements and the interpretability of the model using DTDA. 

Finally, the conclusion section provides a summary of the study, 

its contribution to the field, and implications for future research. 

 

 

2. MATERIALS AND METHODS 

Wafer yield and quality management is a critical task for 

semiconductor manufacturers. A lot of effort has been conducted 

in both industry and academia to improve the wafer yield. 

However, existing yield and quality management approaches 

typically only consider a single process or a few processes. A 

more comprehensive approach is needed to fully utilize the 

potential of process operational data to improve wafer yield. This 

approach should consider all the processes involved in 

semiconductor manufacturing, as well as the interactions 

between these processes. It should also be able to identify and 

respond to potential yield issues in real time. 

One of the very well-known challenges here is first, the 

sheer volume of data that needs to be collected and analyzed. 

Another challenge is the complexity of the semiconductor 

manufacturing process. Effective data mining approaches are 

thus required at various stages of the semiconductor 

manufacturing life cycle. As indicated in the review article [7] 

smart data mining approaches can help significantly improve 

yield, process control and product development. Finally, it is 

important to develop an approach that is cost-effective, robust, 

and scalable.  

With these requirements and limitations understood of the 

conventional approaches for yield and quality analytics, we 

decided to look for alternative method that could address these 

challenges. We learned about Topological Data Analysis (TDA), 

an unsupervised machine learning method widely utilized to 

extract insights from high-dimensional data. The fundamental 

notion in TDA is that data has shape and shape has meaning [1]. 

It aims to reveal crucial connections and dependencies of the 

input data.  

TDA when applied to high dimensional data, reduces the 

muti-dimensions to two dimensional networks composed of 

nodes (or clusters) of similar samples and edges connecting the 

nodes with overlapping characteristics. TDA segments and helps 

to determine features contributing to the given segmentation. 

Furthermore, this approach could be extended to determine 

which features are relevant to the outcome (or target). For 

example, Guo et. al [8] demonstrated the application of TDA in 

detecting faults of semiconductor manufacturing process which 

are known to be difficult using traditional methods. They were 

successful in generating topological networks that captured the 

intrinsic data separation demonstrating that the input data was 

coming from different experiments and identified the 

connections that existed among the clusters of samples in these 

networks. Furthermore, from analyzing the shape of these 

networks they determined the top contributing process variables 

or features that were responsible for the failing wafers. The 

predictive model built using these selected features resulted in 
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high prediction accuracy. In our exploration of TDA, we were 

successful in replicating their results however, we did observe 

few challenges working with the Mapper open-source library [9] 

[10] which was utilized by Guo et. al [8] in their study. The 

Mapper library requires user to pick several parameters which is 

mostly trial and error with no defined metric to determine which 

one of the obtained TDA maps is the actual representation of the 

input data. Secondly, there is a version dependency which 

creates an issue with reproducibility. Furthermore, the post-

processing of the resulting TDA maps is manual to obtain 

quantitative learnings. We, therefore, investigated other python 

based open-source packages besides Mapper and realized the 

drawbacks of working with open-source TDA packages. These 

packages would work fine for exploration purposes with small 

datasets and for POCs but were devoid of readiness for enterprise 

level applications.  They lacked scalability, robustness, and 

could not handle big data i.e., order of millions of rows and 

columns. We therefore explored the commercially available 

TDA platforms. There were two enterprise ready solutions which 

were available in market. After thorough analysis, we picked 

DataRefiner [3] as the platform for conducting topological data 

analysis. In our collaboration with DataRefiner team, we 

developed several customized features in the platform that would 

help with the post-processing and interpreting of the TDA maps 

for semiconductor manufacturing yield and quality use cases. 

 

 

FIGURE 1: HIGH DIMENSIONAL VISUAL ANALYTICS PLATFORM DEMONSTRATING THE FRAMEWORK FOR 

DEEP TOPOLOGICAL DATA ANALYSIS. 

 

 

2.1 Pipeline for analysis and modeling using DTDA 

FIGURE 1 illustrates the overall approach for high dimensional 

visual analytics. DataRefiner’s [3] Deep Topological Data 

Analytics (DTDA) engine is utilized for data mining, 

visualization, feature selection for predictive modeling from the 

high dimensional, sparse, and extremely imbalanced datasets 

encountered in semiconductor manufacturing. 

The following sections present the detailed step-by-step process 

shown in FIGURE 1 consisting of four phases: (A) data 

ingestion, (B) data processing, (C) deep topological data 

analysis, and (D) post-processing (TDA maps/Feature selection). 

A. Data Ingestion: The platform accepts tabular data in form of 

csv files which a user could upload straight to the platform, 

or it could be pipelined through an on-prem database or 

cloud storage such as Microsoft Azure blob storage and 

Databricks Delta Lake tables.  

B. Data Processing: The input variables of the dataset comprise 

of various data subsets corresponding to wafer 

manufacturing for ex. the toolset, recipe, sensor parameters, 

electrical measurements, metrology measurements etc. The 

dimension of dataset can span from several hundreds to 

10k+ columns/rows. The dataset therefore includes both 

categorical and numerical datatypes. To prepare these 

datasets for analysis, pre-processing and cleaning are 

performed utilizing Databricks Spark and Python libraries. 

Columns with 100% null values are dropped. Based on use 

case, rows containing one or more columns with null values 

could be dropped as well. Categorical features are one-hot 

encoded. When supervised training is included, the dataset 

is split into training and test sets where the training set is 

used for model optimization and selection. The platform 

itself performs many data verifications to ensure the 

integrity of the data as well as suggests user on the changes 
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to improve the results. For example, distribution correction 

is an option that user can enable or disable based on their 

use case.  

C. Deep Topological Data Analysis: It is a process of 

transforming pre-processed data on the previous step into a 

topological map for user analysis. This process can be 

presented as 11 step process as shown in FIGURE 2. 

1. The initial step involves acquiring the source data, 

which can take various forms such as numerical matrices or 

raw text. In the case of raw text, the system internally 

performs necessary transformations. 

2. A series of data verifications is conducted by the system 

to ensure data integrity while also providing suggestions to 

the user for improving the results. 

3. An optional stage involves the application of a self-

supervised deep generative model specifically designed for 

extracting high-level parameters from the data, enhancing 

the quality of data segmentation. 

4. Employing a scalable nearest-neighbor algorithm 

utilizing gradient descent, this module enables efficient 

processing of vast datasets, even reaching hundreds of 

millions of records. 

5. The system employs an iterative approach to perform 

topological optimization, aiming to identify and 

characterize homology groups, thereby representing the 

topological structure in both 2D and 3D spaces. 

6. Validation of the resulting topological structure is 

carried out, involving the adjustment of meta-parameters 

and reiteration of steps 4, 5, and 6 to generate new 

candidates. The most optimal candidate is selected as the 

final result. 

7. The final topological structure is presented to the user 

for analysis and interpretation. 

8. The user engages in analysis of the structure, 

comprehending its intricacies, and may make alterations to 

enhance the quality of segmentation. The user can also 

define groups and additional structures for later supervised 

steps. 

9. Once the structure is refined, the user can provide new 

data with a similar structure. 

10. The learned model is then applied to the new data, 

yielding segmentation results based on the acquired 

knowledge. 

11. Finally, a new labeled data file is generated, which can 

be conveniently accessed for download through a web 

interface or an API. 

D. Post-Processing (TDA Maps/Feature Selection):  The 

DTDA engine segments the data based on their shared 

characteristics outputting data maps or graphs. These maps 

are composed of nodes which are clusters containing 

samples from the data that exhibit similar characteristics. 

Edges connecting the nodes are clusters containing samples 

that have overlapping characteristics. Top features of the 

dataset resulting in data segmentation are found. Every 

cluster is clearly explained. Significant feature 

 

FIGURE 2: DATAREFINER ARCHITECTURE 
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correlations are determined at cluster level as well as it is 

possible to determine how the features are correlated at 

global level. Cluster to cluster comparison allows user to 

determine the critical features that differentiates the clusters. 

Precise rules that separate a selected cluster from rest of the 

data is also determined. The distribution of ‘target’ or 

‘outcome’ is visualized by overlaying over the generated 

data maps. Interesting data segments could be then 

identified based on these overlays. Similarly, we can also 

determine how rest of the features are distributed  

throughout the map by selecting the feature of interest in the 

platform giving an insight of data segments with any 

peculiarities. When included supervised training, key 

features for the outcome are also determined. Underlying 

supervised learning model’s performance is obtained 

through the learning curves, confusion matrix for 

classification type problems and R2-score for regression 

learning problems.  

 

3. RESULTS AND DISCUSSION 

We intent to test the hypothesis with empirical data that the 

given dataset contains one or specific combination of process 

flow variables that are resulting in the observed failure that we 

aim to root cause. For proprietary reasons, the exact names of 

variables and devices are not revealed. The input variables 

include process operating conditions, time spans, equipment 

units, and sensor parameters. These are essentially the common 

fields that are chosen for yield analysis. Various fabrication data 

are then combined with each wafer to organize the input 

variables in two-dimensional form such that each row 

corresponds to a wafer and columns correspond to the process 

flow variables. The data are restricted by the wafers of a specific 

product with ‘target’ defined for supervised learning, wafer 

failing/passing the pre-decided criteria are encoded as ‘1’ for fail 

and ‘0’ for pass.  The use cases described here correspond to 

reported wafer failures observed end of line. The challenge here 

was to determine the root causes of failures considering the 

underlying imbalance, high dimensional, and sparsity of the 

datasets.   

The first use case comprised of 2952 wafers (rows) and 974 

wafer process flow steps (columns). Out of these 2952 wafers, 

there were 15 wafers that were failing which was only 0.5%. Our 

hypothesis was if the given dataset contains one or specific 

combination of process flow steps which are causing the failure 

then we should be able to identify those through the unsupervised 

Figure 1 FIGURE 3: TOPOLOGICAL MAP DERIVED FOR THE USECASE #1 DATASET. EACH NETWORK IS NAMED BASED ON THE RELEVANT 
FEATURES FOR THAT NETWORK. NODES CORRESPOND TO WAFER SAMPLE CLUSTERS WITH CONNECTING EDGES INDICATING 
OVERLAPPING CHARACTERISTICS. THE ‘TARGET’ CLUSTER COMPRISES OF ALL THE 15 FAILED WAFERS. 
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DTDA approach. Our approach successfully clusters all failed 

wafers into a single cluster fully unsupervised. The resulting 

TDA map from this dataset is shown in FIGURE 3, where the 

cluster ‘target’ contains all the 15 failed wafers. 

 

 
FIGURE 4: DISTRIBUTION OF TARGET IN EACH CLUSTER. TARGET CLUSTER (IN GREEN) CONTAINS THE 15 FAILED WAFERS.

On overlaying the ‘target’ feature values we can clearly see in 

FIGURE 4 that 100% of the failed wafers aggregate into one 

cluster. We also identified the topmost contributing feature for 

the observed data separation, as seen in the FIGURE 5 where the 

‘target’ cluster corresponds to the maximum value of the X_470 

feature.   

 

On further zooming into the ‘target’ cluster, we were able to 

determine the specific features and their combinations that were 

resulting into the clustering which were X_101, X_156, X_517, 

X_452, X_679 etc. To determine which features of these 

identified as relevant for the overall TDA map are important to 

the outcome i.e., failed vs normal wafer, we further applied 

supervised machine learning method CatBoost which is an open-

source library that uses gradient boosting on decision trees [11] 

for both regression and classification tasks. The feature selected 

as important for the outcome are shown in FIGURE 6. These 

features were further confirmed to be important by the respective 

process owners as top contributors to the observed failures.  
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FIGURE 5: DISTRIBUTION OF THE FEATURE X_470 IDENTIFIED AS THE TOP CONTRIBUTOR TO THE OBSERVED DATA SEPARATION. THE TARGET 

CLUSTER WITH ALL THE FAILED WAFERS CORRESPOND TO HIGHEST RANGE OF VALUE FOR X_470. COLORS ARE IN SYNC WITH THE RANGE OF 

VALUES FOR X_470, FOR EX. GREY COLOR REPRESENTS NULL VALUES AND RED COLOR IS USED TO REPRESENT MAXIMUM VALUE.

The second use case that we investigated using this 

DTDA comprised of 11,468 wafers with 962 process flow steps. 

Out of this 11k+ wafers, there were 1137 wafers that were failing 

their metrics. The challenge was to determine out of these 900+ 

process steps which one was contributing to the failed wafers. 

The hypothesis we were testing was same as use case 1 i.e., if the 

given dataset contained one of specific combination of process 

flow steps which are contributing to the failure, then we should 

be able to capture those through DTDA. In FIGURE 7, the 

resulting TDA map from the given dataset is shown. 

Interestingly, when the ‘target’ values are overlaid on this map in 

FIGURE 8 no distinct cluster which is composed of all the failed 

wafers is found.  

 

 
 

FIGURE 6: FEATURES SELECTED FROM DTDA AND SUPERVISED 

LEARNING APPROACH.  HIGHER THE SCORE LARGER THEIR IMPACT 

WOULD BE ON THE OUTCOME.
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FIGURE  7: TOPOLOGICAL MAP DERIVED FOR THE USECASE #2 DATASET. EACH NETWORK IS NAMED BASED ON THE RELEVANT 

FEATURES FOR THAT NETWORK. 

 

 
FIGURE  8: DISTRIBUTION OF TARGET VALUES THROUGHOUT THE TDA MAP, '1' INDICATES FAILED WAFER AND '0' INDICATES NORMAL 

WAFER.
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There is an even distribution of the ‘target’ values as 

shown in which conveys that the dataset does not contain 

features that have the strongest impact and thus, fail to explain 

the observed wafer failures. Thus, to determine what part of the 

manufacturing flow resulted in these failures it needs to examine 

if the dataset is complete or additional data collection is required. 

Nevertheless, with this approach we were able to visualize the 

various segments of the dataset and how the ‘target’ values were 

distributed in those segments which would not have been 

possible otherwise with the classical approaches.  

 

4. CONCLUSION 

Semiconductor manufacturing is a long and complex 

manufacturing process through which silicon wafers are turned 

into electronic devices. Considering the complexity and the 

enormous amount of data that the manufacturing process 

generates, it has been becoming increasingly challenging to 

determine the root cause of failures. The wafer manufacturing 

yield and quality are significantly impacted if a single or 

combination of those process steps malfunction. In 

semiconductor manufacturing we are thus, posed with a high 

dimensional data problem where the datasets could have more 

features than the samples especially during the new product 

introduction phase where limited wafers are available. As a 

result, these datasets could be extremely imbalanced, and at 

times sparse. In such a situation, classical and established AI/ML 

approaches turn out to be ineffective in identifying the root 

causes for yield and quality improvement.  

Deep Topological Data Analysis (DTDA) an unsupervised 

machine learning comes to rescue with its unique capability to 

extract useful patterns and determine relevant features from such 

high dimensional datasets. We have successfully demonstrated 

how our proposed framework based on DataRefiner’s DTDA 

engine enabled our yield & quality teams to conduct data mining, 

visualization, and predictive modeling for their high 

dimensional, sparse, and extremely imbalanced datasets. The 

discussed approach is applicable to structured data i.e., in form 

of rows and columns. In future, we intent to further refine our 

approach and make it applicable to unstructured data i.e., images 

as they are known to be major source of data in semiconductor 

manufacturing and are extremely valuable for various yield 

improvement tasks that could be automated with our approach. 
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